GitHub as an identity provider

As I write these words, I have just finally disabled our LDAP/Active Directory server based on Samba which is incredibly hard to update, to backup and to re-create in case of emergencies.

We’ve traditionally used Gmail for Email and Calendar access and LDAP/Active Directory for everything else: The office WLAN, VPN access, internal support tool access, SSH access, you name it.

However, that solution came with operational drawbacks for us:

  • Unix support for Active Directory is flaky at best and the UI that Windows once provided for setting up LDAP attributes required for Unix users has stopped working with Windows 8
  • Samba is hard to install and keep up to date. Setting up an Active Directory domain creates a ton of local state that’s difficult to back up and impossible to put into a configuration management system.
  • The LDAP server being reachable is a prerequisite for authentication on machines to work. This meant that tunnels needed to be created for various machines to have access to that.
  • Each Debian update came with new best practice for LDAP authentication of users, so each time new tools and configuration needed to be learned, tested and applied.
  • As we’re working with contractors giving temporary access to our support tools is difficult because we need to create temporary LDAP accounts for them.
  • Any benefits that could have been had by having workstations use a centralized user account database have evaporated over time as our most-used client OS (macOS) lost more and more central directory support.

On the other hand, everybody at our company has a GitHub account and so do contractors, so we’re already controlling user access via GitHub.

GitHub provides excellent support for account security too, especially once we could force 2FA to be enabled on all users. Also over time, the reliance on locally installed tools grew smaller and smaller when on the other hand, most cloud services were making use of provide OAuth Sign-in-with-Github functionality.

It became clear that stuff would work ever so much better if only we could get rid of that LDAP/Active Directory thing.

So I started a multi-year endeavor to get rid of LDAP. It wouldn’t have needed to be multi-year, but as this happened mostly as side-projects, I tackled them whenever I had the opportunity.

I’m fully aware that this puts us into the position where we’re dependent on our Github subscription to be active. But so does a lot of our daily development work. We use Issues, Pull Requests, GitHub Actions, you name it. While git itself is, of course, decentralized, all the other services provided by GitHub are not.

Then again, while we would be in a really bad spot with regards to our development processes, unhooking our glue code from GitHub and changing it to a traditional username/password solution would be very feasible even in a relative short time-frame (much shorter than the disruption to the rest of our processes).

Which means that I’m ready to increase the dependency on GitHub even more and use them as our identity provider.

The first thing to change was the internal support tools our support team uses to get authenticated access to our sites for support purposes. The interface between that tool and the sites has always been using signed access tickets (think JWT but slightly different, mostly because pre-dating JWT by about 5 years) to give users access. The target site itself did not need access to LDAP, only the support tool needed it to authenticate our support team members.

So unhooking that tool from LDAP and hooking it up to Github was the first step. Github has well-documented support for writing OAuth client apps to authenticate users.

Next was authenticating users to give SSH access to production machines. This was solved by teaching our support tool how to sign SSH public keys and by telling the production machines to trust that CA.

I wrote a small utility in Swift to send an SSH public key to the support tool to have it signed and to install the certificate in the SSH agent. The certificates have a short lifetime ranging from one day to at most one week (depending on user) and using the GitHub API, the central tool knows about team memberships which allows us to confer different permissions on different servers based on team membership.

None of the SSH servers can do all of the certificate validation entirely locally (due to the short lifetime we can live without a CRL), independent of network access (which there is none of for some machines).

Which meant that SSH access is now possible independently of LDAP and even network availability. And it’s using a mechanism that’s very simple and comes with zero dependencies aside of openssh itself.

Then came the VPN. I’ve run IPSec with IKEv2 to provide authenticated access to parts of the production network. It (or rather the RADIUS server it used) needed access to LDAP and even though it was using stock PFSense IPSec support, it was unreliable and needed restarts with some regularity.

This was entirely replaced by a SSH bastion host and ProxyJump in conjunction with above SSH certificates. No more LDAP and production access based on GitHub group membership of GitHub accounts. While it never happened and I would be very wary of allowing it, this would allow us to give selective access to machines to contractors based on nothing but their GitHub account (and who doesn’t have one of those these days).

Behind the production network, there’s another, darker part of the infrastructure. That’s the network where all the remote management interfaces and the virtual machine hosts are connected to. This one is absolutely critical and access to it is naturally very restricted.

The bastion host described above does not have access to that network.

In comes the next hat our support tool/github integration is wearing: It can synchronize Tailscale ACLs with Github and it can dynamically alter the ACL to give temporary access to specific users.

Tailscale itself uses Github as an identity provider too (and also supports custom identity providers, so, again, losing GitHub for this would not be the end of the world) and our support tool uses the GitHub and Tailscale APIs to make sure that only users in a specific GitHub group get access to Tailscale at all.

So everybody who needs network access that’s not doable or not convenient via the SSH bastion host has a Tailscale account (very few) and of those even fewer users are in a GitHub Team that causes our support tool to allow for such users to request temporary (30 min max) access to the super secret backstage network.

Which completely removes the last vestiges of the VPN from the picture and leaves us with just one single dependency: The office wifi.

Even though the office network really isn’t in a privileged position (any more), I want access to that network to be authenticated and I want to be able to revoke access to individual users.

Which is why we have always used Enterprise WPA over RADIUS against Active Directory/SAMBA to authenticate WiFi access to the office network.

This has now been replaced by, you guessed it, our support tool which creates and stores a unique completely random password for each user in a specific Github Team and offers an API endpoint to be used by the freeRADIUS rlm_rest module to authenticate those users. In order to still have Wifi even when our office internet access is unavailable (though I can’t really see why we’d need that given our reliance on cloud-based services), I added a local proxy in front of such API endpoint that serves a stale response in case of errors (for some hours – long enough for us to be able to fix the internet outage but short enough to not let no-longer-authenticated users access the network).

With this last step, our final dependency on LDAP was finally dropped and all our our identity management is now out-sourced to GitHub, so I could finally issue that one last command

shutdown -h now

Fun* with SwiftUI Beta 5 and 6

After a lot of momentum in Beta 4 where I finally got my rogue smide.ch client for the watch to work, Beta 5 and 6 were a bit of a letdown with regards to real-world usability.

Already with Beta 4, Apple has deprecated @ObjectBinding and BindableObject, both of which total staples of SwiftUI and totally required for you to do any kind of meaningful application because they provide the glue by which you hook your UI up to you actual application.

With this, even the last pieces of sample code shown at WWDC sessions about SwiftUI were now invalidated. What a breakneck speed of development.

On the other hand, this was also a case of parallel evolution inside Apple because all the old pair provided was also provided by the Combine framework with latter having the advantage of actually be usable not just in SwiftUI but anywhere in your applications.

So I can completely understand the reasoning behind the deprecation. If you are willing to clean this up, then the beta period is the time to do it.

However in Beta 4 on watchOS, while the old method was deprecated, the new way only worked partially: If you changed your class that was previously inheriting from BindableObject to now inherit from the correct Combine.ObservableObject, none of your publishes would actually be picked up by SwiftUI and the UI would remain static.

So in Beta 4, even though it was deprecated, I kept using BindableObject because that’s what was working. @ObjectBinding on the other hand, I could replace with @ObservedObject

But then, Beta 5 happened and the Beta 4 app crashed on startup.

Trying to compile it lead to a linker error because BindableObject now was gone for good. Note that the compiler was still just complaining about it being deprecated, but at link time, the symbol was missing and linking failed. This would also explain the crash at startup of the old Beta 4 app.

I’ve quickly replaced BindableObject with Combine.ObservableObject which made the app build again and run fine – on the simulator

On the real hardware, it would continue crashing on launch.

Even after installing the logging profile on the watch in order to get some information via the Console, all I got was a single log line entry from Carousel complaining about the launched process shutting down.

As this is just a fun project after all, this is where I stopped again, waiting what further betas will bring.

After a while, Beta 6 came and went. It brought no change.

Then, Beta 7 happened, but I didn’t even bother trying to recompile without an updated Xcode which finally happened today and, spoiler alert, my App is back in a running state. No further changes were required.

So it all wasn’t my fault after all.

Next time I’ll talk about the changes I’ve done since Beta 7 and Xcode Beta 6

Fun with SwiftUI – Beta 4

After hitting yet another wall with Beta 3, the moment Beta 4 was released I’ve updated all my devices, recompiled the application and looked at it on the watch.

This time, without any change on my part, things just fell into place:

Location permission worked correctly. I had my list of Bikes sorted by location

What I didn’t like as much though were all the deprecation warnings I was already accumulating. During this years Beta Period, none of the APIs presented at WWDC were finalized. SwiftUI and Combine are still very much in flux and the APIs change on a biweekly basis.

At the time of this writing, Beta 5 has already removed all older deprecations and has added even more deprecations. We’re now at a point where most of the videos from WWDC sessions that are explaining SwiftUI and combine are not applicable to the real world any more, but that’s for another post.

Some lipstick on the pig

With things mostly working right, there was one thing that was bugging me in the list of bikes you’re seeing in the screenshot above: The distances to my current location were manually formatted in meters, but I knew that Apples platforms come with very good locale dependent unit formatters, so I wanted to fix that.

MeasurementFormatter has a .naturalScale unit option that’s supposed to pick scale and unit automatically dependent on the user’s locale. In case of distances, here in Switzerland, I would expect a distance to be shown in meters up until 1 km at which point I would expect a distance to be shown in km with one fractional digit of accuracy.

But that’s now what MeasurementFormatter does: It insisted on using km and it insisted on three fractional digits of accuracy. That’s why I’ve decided to format on my own. But I knew there must be a proper solution.

It tuns out, there is – but it’s part of MapKit, not of Foundation: There’s MKDistanceFormatter to use for this and while MeasurementFormatter has a unitOptions property, the MKDistanceFormatter has a unitStyle property which you can set to .abbreviated to get to the proper effect.

So I have added that and also used battery icons based on SFSymbols to display the bikes battery levels like so:

we’ll never know why there’s no battery.50 image. Only .100, .25 and .0

Reactive warts in SwiftUI

Remember when I said that the whole UI hierarchy was going to be built from one parent SwiftUI view that would decide on a state object? That’s the design I totally went with:

My main ContentView is just a big switch statement, completely exchanging its subview hierarchy dependent on what the global state handler object thinks should be currently active.

As you can see in above code, there’s only .ListingBikes – there’s no state to list a single bike. That’s fine, because that’s up to that BikeList view to decide to instead of listing a list of bikes it wants to show a single bike.

I did this using a NavigationLink nee NavigationButton setting its destination to the detail view:

What’s nice is that you get a free sliding animation and a free back button out of this. However, what’s not as nice is that if you do this, the detail view gets pushed as another native view on top of the existing view.

Which means that even when the big switch statement from the screenshot above causes a different sub-view to be rendered (and it does get rendered), then the additional view pushed by the NavigationLink remains shown on top and does not get closed.

In the end, here on Beta 4, I went with a NavigationDestinationLink so I could first close the detail view and then tell the state handler I wanted to create a booking.

At the time of this writing (Beta 5 has just been released), NavigationDestinationLink is already deprecated again and the state whether the destination is showing or not can be passed as a $binding, however, also at the time of this writing, this currently messes with the free back button

Another thing that falls in the same bucket of re-painting the whole hierarchy does not in fact repaint the whole hierarchy is a SwiftUI View’s navigationBarTitle modifier: if you set that once on any subview, it will persist even through you removing that subview and replacing it by another which doesn’t use the navigationBarTitle modifier.

Meaning that setting a property on a subview as an effect on global state.

This feels wrong to me.

First booking

Anyways – enough complaining. With all of this in place, I did my very first commute with a smide bike using nothing but my watch. Here you see me at the end of the trip, ready to end the booking:

That felt great.

What doesn’t feel great is the mess Beta 5 made out of my nicely layouted UI. But that’s for another day.

Fun with SwiftUI – Beta 3

After being abruptly stopped last time by a compilation step that would not complete in a finite amount of time, I let the project rest until Beta 3 was released.

I could probably have found my mistake, but I was also willing to give it another two weeks and then see whether the compiler would just tell me what I was doing wrong.

Which, when Beta 3 was released, it actually did. Trying to recompile the project would immediately be stopped at a clear error message (I don’t actually remember the details any more), but the fix was very easy after all.

Motivated to finally move on, I finished hooking up my state handler to the UI itself and I was finally at a point where I would run this skeleton in the simulator.

Simulator says: nope.

First the good news: Apple was right when they proudly said that they have improved the watch simulator workflow: Launching the simulator in stand-alone mode finally is a sub-second endeavor and so is actually launching your app in the debugger.

Working this way is actual honest-to-god fun.

Yes, things should just work like this out of the box, but until now, they never did: Running the watch simulator meant also running the phone simulator and proxying all debugger operations through the phone simulator, including breaking connections and horrible, horrible lag.

But none of this still happens in WatchOS 6: The simulator can run on its own and it launches instantly. No connection issues.

At least not to talk to Xcode…

My initial excitement about things working so well was abruptly dampened by the fact that all network access I was trying to do in the simulator ended up failing with a generic error and in the log output some backend component would complain about losing connection to the background transfer service.

Of course I first assumed to be the source of the problem and I spent two hours trying to find out what I was doing wrong.

I shouldn’t have, because my last resort was to check the Apple Beta forums and there, I didn’t even have to bother posting a question: Others had the issue too and the solution is to just use a real device.

Onwards to the real device

Updating a watch to a Beta OS is a tricky proposition: There is no (official) way to ever downgrade and stuff is known to be shaky.

Also, my watch is the one single computer I use that produces data for which I have no backup and re-creating the data is a (literally) painful experience.

I’m talking about workout data.

For two years now I’m running 10ish km every day and while I know rationally that the actual act of running is what counts, unfortunately, my subconscious only accepts a run as having happened when it’s also tracked in the Activity app and when the rings are closed.

So would I dare updating to a beta version knowing that I can’t downgrade and that the watch is producing irreplaceable data that I heavily rely on?

Of course I would. 🤓

But only after checking our local electronics retailer to make sure that they had a replacement watch on stock if worse comes to worst. Yes. I know that you can ask Apple to downgrade a bricked/unsuable watch, but that would mean days without the watch and days without my runs being tracked.

Inacceptable.

Anyways. Updating to watchOS 6 went fine and a small test walk around my house has shown that tracking workouts was still generally working fine. So I was all set to try it on the real device.

Moving forward on the device

The good news: While not as fast as the simulator, deploying and debugging on the watch still is considerably quicker and more reliable than it ever was on any previous combination of Xcode, iOS and watchOS.

Debugging still involves proxying though the phone, but now it’s reliable. Over the course of 4 weeks of doing this (spoiler alert), I only had one or two instances where Xcode wouldn’t talk to the watch and more and I had to restart my computer, my phone and my watch to get connectivity restored.

Judging by other people’s prior experiences, this is a huge step forward.

The other good news: Network requests to indeed work on the real device. My client could fetch a JWT token from the smide.ch service and it could get a list of currently available bikes.

Impressive rendering speed

I have chosen the most naïve implementation possible and just fed the whole list of ~200 bikes directly into the UI framework. No dealing with cell reuse, no limiting the size of the list, nothing. Just “hey SwiftUI, please render this list of 200 bikes”.

And render it does: It’s quick and scrolling through the whole list is buttery smooth without doing any kind of optimization work. And once the next roadblock is fixed (see below) and the list gets dynamically re-sorted as my location changes, that too is buttery smooth.

I’m getting away with telling the framework that the list has changed and needs repainting and I just pass it a new updated list of bikes. The change is instantaneous. Even though it’s a new list of 200 items.

This is so much fun. I shouldn’t need to care about minimizing updates. I shouldn’t need to care about cell reuse. I shouldn’t need to deal with this. And with SwiftUI, I don’t have to.

Location roadblocks

Excited, I moved forward to asking for location access and using location to sort the list of bikes.

And this is where things ground to a halt.

Whenever my independent watch app extension would be launched, I would be calling CLLocationManager.authorizationStatus() which would tell me that my status was .notDetermined, so I would ask for permission.

My delegate callback would be called with .authorizedWhenInUse, but CLLocationManager.authorizationStatus() would still return .notDetermined and all attempts at calling location specific API would be ignored.

As this was my first strides into CoreLocation, I assumed this to be my fault and spent a lot of time debugging this, moving code around and trying out things, but not matter what I did, the effects didn’t change.

Then I tried Apple’s Sample Code from 2016 which of course worked fine even after I changed the integrated watch app to be usable independently.

After a few more hours of trial and error, I finally was able to pin it down though: In Beta 3 (and presumably earlier Betas too), the CoreLocation permission management is broken if your watch app is a completely independent watch app.

If it has a companion iOS app, then requesting location permission is fine, but when you have a watch app without any iOS app which has a plist that looks like this:

<key>WKWatchOnly</key>
<true/>

Then requesting location permission would trigger a race condition where your permission is simultaneously granted and not granted.

I could have caved and made an empty iOS companion app at this point, but I decided to report this issue using Feedback Assistant and call it another two weeks.

The relief I felt when I’ve seen Apple’s official code sample to fail the same way as my sample code did the moment I set that WKWatchOnly flag was one hell of a feeling.

I wasn’t doing it wrong. I wasn’t losing my mind.

Next time, things will finally fall into place, but only after dealing with deprecations.

Fun with SwiftUI – Beta 2

After spending the first two weeks of the beta period to get a foundation going, I was eager to start working on the actual watch app.

This was right about the time when Beta 2 hit, so first I’ve upgraded to that and then started with the Watch project.

Building the UI

Eager to play around with SwiftUI, the first thing I have done was to actually just create a skeleton UI:

What immediately sprang to my mind as I was working on this was the fact that the built-in preview feature of SwiftUI forces you to keep your views self-contained and to keep the dependencies small and to keep your data easily mockable.

Otherwise you will suddenly be in the position where your Xcode preview requires working network connections and a lot of application state.

I’ve also learned that Beta 2 was still on very shaky grounds before running the actual code even once: My attempts to display a map view caused Xcode to crash completely the moment it tried to paint the UI preview, so I’ve stubbed that out to just be a rectangle

But overall, designing (if you can call it that) the skeleton UI went very quickly (a matter of a few hours) and I was eager to hook everything up.

A hard stop

After working on the UI, the next step was to produce a backend that orchestrates the actual application state. This single class is the only thing that keeps track of state in the application and based on which the UI decides what to paint and how and where the UI will call into in order to change the overall state (for example when the user logs in or when they start a booking)

This is what (at the time) you would use @ObjectBinding and BindableObject for.

My next step, thus, was to create what I called the ApplicationStateHandler which I had implement the BindableObject protocol.

That handler itself would expose a state property which could have one of various values of an ApplicationState enum. The main SwiftUI view would basically be a huge select statement over that state property and then decide what actual view to render based on the state.

This was my plan, but no matter what I did, the moment I had ApplicationStateHandler implement the BindableObject protocol, I would put Xcode 11 Beta 2 in a state where it was using 100% of each of my 8 CPU cores while trying to compile my code.

So in the end, I wasn’t stopped by incomprehensible error messages (I got my share of those too), but by a compilation run that did not seem to want to complete in finite time.

Instead of solving the halting problem, I decided to wait another two weeks because I already had other non-project related things on my plate.

Stay tuned for next time to see what stopped me hard in Beta 3

Fun with SwiftUI – Beta 1

As explained before, I’ve decided to scratch my own itch and write an independent Apple Watch client for the smide.ch bike sharing service.

The first step to getting from the idea to the final watch app wasn’t actually involving the Watch at all: Before I could get started, I needed to know how the existing smide clients actually work and how to talk to their server.

Then I wanted to have a unit-tested library that I could use from the Watch Frontend.

On top of that library, I wanted to have a command-line client for easier debugging of the library itself.

And only then would I start working on the frontend on the watch.

Preliminaries

So as the Developer Beta 1 for XCode 11, WatchOS 6 and Catalina rolled out, the first few days of development I spent reverse-engineering the official Smide Client.

As always, the easiest solution was to just de-compile their Android Client and lo and behold, they are making use of retrofit to talk to their server which lead to a very nice and readable interface documentation right in my decompiler

Armed with this information, a bit of grepping through the rest of the decompiled code and my trusty curl client, I was able to document the subset of the API that I knew I was going to need for the minimal feature-set I wanted to implement.

In order to have a reference for the future, I have documented the API for myself in the OpenAPI format

This is useful documentation for myself and if I should ever decide to make the source code of this project available, then it’ll be useful for anybody else wanting to write a Smide client.

Moving to XCode: SmideKit

Now that I had the API documentation I needed, the next step was to start getting my SmideKit library going.

Even though there are tools out there that generate REST clients automatically based on an OpenAPI spec, all the tools I looked at produce code that relies on third-party libraries, often Alamofire. As XCode 11 was in a very rough shape already on its own, I wanted to minimize the dependencies on third-party libraries, so in the end, I’ve opted to write my own thin wrapper on top of URLSession

The SmideKit library

SmideKit is a cross-platform (by Apple’s definition) library in that the code itself works across all of Apple’s OSes, but there are individual targets for the individual OSes

But by manually setting the Bundle Name to $(PRODUCT_NAME) in the individual Info.plist files, I can make sure that all projects can just import SmideKit without any suffixes.

As this library is the most crucial part of the overall project, I have written unit testes for all methods to make sure we correctly deal with expiring tokens, unresponsive servers and so on.

The command line client

The first user of SmideKit would be a macOs command-line frontend called smidecli. It would offer various subcommands for listing bikes, booking them and ending bookings.

Here’s a screenshot of me booking a bike

Going from nowhere to the working command-line client has taken me the whole period of Beta 1. Two weeks is a long time but between my actual day job and my newly put upon me parenting duties, my time was a bit limited.

Still. It felt good to go from nowhere to writing a library, writing a command-line frontend and then actually using it to book a bike. On the other hand: None of the code written at this point had anything to do with the announcements of WWDC. All work done could just as well have been done on the old SDKs. But still: Having a good foundation to stand on, I was sure was going to pay off.

Next time: Adventures in Beta 2

Fun project in SwiftUI

This year’s WWDC really shook the Apple Ecosystem with probably the most announcements ever happening at a single conference.

Three of the announcements when put together finally pushed me over the line to scratch a personal itch of mine that I was having for a bit more than a year: I’m a very happy customer of the smide.ch bike sharing service here in Zürich, Switzerland: Their electric bikes are well maintained, extremely fun to use and readily available to the point that they have become my main means for transport for my daily commute.

On the other hand, as the Apple Watch has become more and more capable over time between updates to the OS and to the hardware itself to the point where I can now theoretically leave my phone at home and just rely on the watch.

The last remaining hard stopping block was the smide client which so far is only available on the phone, but not on the watch.

So there you see my itch that needed scratching.

In this context, this year’s WWDC was the perfect storm for me: independent Watch apps, SwiftUI and especially SwiftUI on the watch as a real native UI framework unshackled from the constraints of the purely Storyboard based hacks in WatchKit.

The moment I dug through the announcements, I knew: I need to make myself a Smide client and after 3 Beta releases from Apple, that’s what I have done:

After launching the App and assuming you’re logged in, it lists the bikes around you, sorted by distance to your current location (they have both black (smaller) and white (bigger) bikes – hence the coloring):

Tap any bike and you get a detail view including a map

Start the booking and you get some booking information

This feature-set is very limited compared to the official client:

  • Logging in only works for accounts that were created with an email address and a password. There is no way for my third-party client to possibly work with any oAuth provider
  • There is no way to report an issue with a bike
  • The client doesn’t currently take into account the free 10 minute reservation
  • The official client does some additional user interface activity reporting which my rogue client doesn’t do.
  • There is zero payment related functionality: As I personally have a 3 year subscription, I don’t need it and besides, this is a rogue client and I can’t and don’t want to deal with their payment system.

Still. This was a fun experience to develop and to keep up-to-date between the various Beta releases, all of which deprecated some essential functionality that was also shown off during conference sessions.

Over the next few days I’m going to write down a development diary like I have done for tempalias back in the days.

To put a bit of a damper on your expectations: As this work is not sanctioned by Smide themselves and as it’s based on reverse-engineering their existing client and because this year’s API for SwiftUI and Combine is still very much in flux, I’m reluctant to release the source code of this.

Why I recommend against JWT

Json Web Tokens are all the rage lately. They are lauded as being a stateless alternative to server-side cookies and as the perfect way to use authentication in your single-page app and some people also sell them as a work around for the EU cookie policy because, you know, they work without cookies too.

If you ask me though, I would always recommend against the use of JWT to solve your problem.

Let me give you a few arguments to debunk, from worse to better:

Debunking arguments

It requires no cookies

General “best” practice stores JWT in the browsers local storage and then sends that off to the server in all authenticated API calls.

This is no different from a traditional cookie with the exception that transmission to the server isn’t done automatically by the browsers (which a cookie would be) and that it is significantly less secure than a cookie: As there is no way to set a value in local storage outside of JavaScript, there consequently is no feature equivalent to cookies’ httponly. This means that XSS vulnerabilities in your frontend now give an attacker access to the JWT token.

Worse, as people often use JWT for both a short-lived and a refresh token, this means that any XSS vulnerability now gives the attacker to a valid refresh token that can be used to create new session tokens at-will, even when your session has expired, in the process completely invalidating all the benefits of having separate refresh and access tokens.

“But at least I don’t need to display one of those EU cookie warnings” I hear you say. But did you know that the warning is only required for tracking cookies? Cookies that are required for the operation of your site (so a traditional session cookie) don’t require you to put up that warning in the first place.

It’s stateless

This is another often used argument in favour of JWT: Because the server can put all the required state into them, there’s no need to store any thing on the server end, so you can load-balance incoming requests to whatever app server you want and you don’t need any central store for session state.

In general, that’s true, but it becomes an issue once you need to revoke or refresh tokens.

JWT is often used in conjunction with OAuth where the server issues a relatively short-lived access token and a longer-lived refresh token.

If a client wants to refresh its access token, it’s using its refresh token to do so. The server will validate that and then hand out a new access token.

But for security reasons, you don’t want that refresh token to be re-used (otherwise, a leaked refresh token could be used to gain access to the site for its whole validity period) and you probably also want to invalidate the previously used access token otherwise, if that has leaked, it could be used until its expiration date even though the legitimate client has already refreshed it.

So you need a means to black-list tokens.

Which means you’re back at keeping track of state because that’s the only way to do this. Either you black-list the whole binary representation of the token, or you put some unique ID in the token and then blacklist that (and compare after decoding the token), but what ever you do, you still need to keep track of that shared state.

And once you’re doing that, you lose all the perceived advantages of statelessness.

Worse: Because the server has to invalidate and blacklist both access and refresh token when a refresh happens, a connection failure during a refresh can leave a client without a valid token, forcing users to log in again.

In todays world of mostly mobile clients using the mobile phone network, this happens more often than you’d think. Especially as your access tokens should be relatively short-lived.

It’s better than rolling your own crypto

In general, yes, I agree with that argument. Anything is better than rolling your own crypto. But are you sure your library of choice has implemented the signature check and decryption correctly? Are you keeping up to date with security flaws in your library of choice (or its dependencies).

You know what is still better than using existing crypto? Using no crypto what so ever. If all you hand out to the client to keep is a completely random token and all you do is look up the data assigned to that token, then there’s no crypto anybody could get wrong.

A solution in search of a problem

So once all good arguments in favour of JWT have dissolved, you’re left with all their disadvantages:

  • By default, the JWT spec allows for insecure algorithms and key sizes. It’s up to you to chose safe parameters for your application
  • Doing JWT means you’re doing crypto and you’re decrypting potentially hostile data. Are you up to this additional complexity compared to a single primary key lookup?
  • JWTs contain quite a bit of metadata and other bookkeeping information. Transmitting this for every request is more expensive than just transmitting a single ID.
  • It’s brittle: Your application has to make sure to never make a request to the server without the token present. Every AJAX request your frontend makes needs to manually append the token and as the server has to blacklist both access and refresh tokens whenever they are used, you might accidentally end up without a valid token when the connection fails during refresh.

So are they really useless?

Even despite all these negative arguments, I think that JWT are great for one specific purpose and that’s authentication between different services in the backend if the various services can’t trust each other.

In such a case, you can use very short-lived tokens (with a lifetime measured in seconds at most) and you never have them leave your internal network. All the clients ever see is a traditional session-cookie (in case of a browser-based frontend) or a traditional OAuth access token.

This session cookie or access token is checked by frontend servers (which, yes, have to have access to some shared state, but this isn’t an unsolvable issue) which then issue the required short-lived JW tokens to talk to the various backend services.

Or you use them when you have two loosely coupled backend services who trust each other and need to talk to each other. There too, you can issue short-lived tokens (given you are aware of above described security issues).

In the case of short-lived tokens that never go to the user, you circumvent most of the issues outlined above: They can be truly stateless because thank to their short lifetime, you don’t ever need to blacklist them and they can be stored in a location that’s not exposed to possible XSS attacks against your frontend.

This just leaves the issue of the difficult-to-get-right crypto, but as you never accept tokens from untrusted sources, a whole class of possible attacks becomes impossible, so you might even get away with not updating on an too-regular basis.

So, please, when you are writing your next web API that uses any kind of authentication and you ask yourself “should I use JWT for this”, resist the temptation. Using plain opaque tokens is always better when you talk to an untrusted frontend.

Only when you are working on scaling our your application and splitting it out into multiple disconnected microservices and you need a way to pass credentials between them, then by all means go ahead and investigate JWT – it’ll surely be better than cobbling something up for yourself.

sensational ag is hiring an iOS developer

Sensational AG is the company I founded together with a collegue back in 2000. Ever since then, we had a very nice combination of fun, interesting work and a very successful business.

We’re a very small team – just six programmers, one business guy and a product designer. Me personally, I would love to keep the team as small and tightly-knit as possible as that brings huge advantages: No politics, a lot of freedoms for everybody and mind-blowing productivity.

I’m still amazed to see what we manage to do with our small team time and time again and yet still manage to keep the job fun. It’s not just the stuff we do outside of immediate work, like UT2004 matches, Cola Double Blind Tests, Drone Flights directly from the roof of our office, sometimes hosting JSZurich and meetups for the Zurich Clojure User group and much more – it’s also the work itself that we try to make as fun as possible for everybody.

Sure – sometimes, work just has to be done, but we try as much as possible to distribute the fun parts of the work between everybody. Nobody has to be a pure code monkey; nobody constanly pulls the “change this logo there for the customer” card (though, that card certainly exists to be pulled – we just try to distribute it).

Most of the work we do flows into our big eCommerce project: Whenever you order food in a restaurant here in Switzerland, if the restaurant is big enough for them to get the food delivered to them, the stuff you eat will have been ordered using the product of ours.

Whenever you visit a dentist, the things they put in your mouth likely have been ordered using the product of ours.

The work we do helps countless people daily to get their job done more quickly allowing them to go home earlier. The work we do is essential for the operations of many, many companies here in Switzerland, in Germany and in Austria.

From a technical perspective, the work we do is very interesting too: While the main part of the application is a web application, there are many components around it: Barcode Scanners, native Smartphone applications and our very own highly available cluster (real, physical hardware) that hosts the application for the majority of our customers.

As even our end users slowly start to use their mobile phones more and more, so do our native mobile applications gain in importance to the point where we really have to focus a lot more resources on them.

This is where you come in: In order to provide the best possible user experience, we have decided to develop our offlline-first, native mobile applications separately for both iOS and Android and while we have Android pretty much covered, iOS is lagging behind a bit

If you’re interested to help us out with iOS, here’s what you will be working with.

  • The application is written in Swift, so you’ll likely use a lot of Swift during your day, however, we don’t mind if you decide you prefer to use something else.
  • The native application talks to a web service API of our main web application. But as the API is mostly private, you have the ability to directly influence the application in many cases.
  • As some parts of the process are very customizable, we’re looking into embedding react native views into the existing application.
  • As we maintain our applications for a long time, code-archeology is an important part of our work. And archeology is much more easily done with useful self-contained commits, so you’ll likely have a bit of a culture-shock when you see us use every nook and cranny of git’s feature-set. But don’t worry: We’ll help you get up to speed quickly.
  • We have bi-weekly meetings focussed on development practices and challenges we’ve overcome. You will have the direct ability to influence how we work together.

The platform we use to develop on is everybodys own choice. Everybody here uses Macs, but whatever you are most productive with is what you use, though as we’re talking mostly iOS development here, you’re probably going to use a Mac. Be it an iMac or a MacBook Pro – you tell us what you need and we’ll make it possible.

All of the code that we work with daily is home-grown (minus some libraries, of course). We control all of it and we get to play with all the components of the big thing. No component can’t be changed, though we certainly prefer changing some over the others :-)

Between the Cola tests and the technical versatility and challenges described above: If I can interest you, dear reader, to join our crazy productive team in order to improve one hell of a suite of applications, then now is your chance to join up: We need more people
to join our team of developers.

Also, if your particular problem is better solved in $LANGUAGE of your choice, feel free to just do it. Part of the secret behind our productivity is that we know our tools and know when to use them. Good code is readable in any language (though I’d hve to brush up my lisp if you chose to go that route).

Interested? I would love to hear from you at
phofstetter@sensational.ch.

Tracking runs with the Apple Watch

When I started running this summer, I also wanted to make use of my Apple watch to keep track of my routes and my speed over time, so I looked into the various apps and services around that.

Generally, there are two parts to tracking a run: One part is the actual data gathering that happens while you’re running and the other part is the analysis and comparison other other runs afterwards.

Unfortunately, of all the applications I looked at, none excelled at both, so in the end what I’ve ended up with is writing custom code to give me the best of both worlds.

Here’s what I’ve looked at.

Apple Workouts.app

The built-in Workout app of the watch, being a watch-native app made by Apple, is more equal than other apps: It’s the only app that allows you to trigger the screen lock while in the app and with WatchOS 4 it’s also the only app that gives you very easy access to the media controls. And finally, it’s the only app that can log its tracked workout and movement Activitiy in the Activitiy app in their actual colors instead of just gray (yes. very important this).

It offers very readable data on-screen while it’s running, it can send timely notifications as you pass another kilometre and it never crashes.

Looking at the Map of the run in the Activity app, it also collects very accurate location data.

As good as it is for collecting data, as bad it is for analysis of the data though: The best you can do is have a look at a single workout. There’s no way to compare two – unless you take screenshots and do that manually.

There is also no way to export the data: In the workout details there is a share button, but that just exports a corny text and a useless picture. No detail is included.

Screen Shot 2017-09-04 at 08.51.13.png
Yes. This is all you get from exporting a run. I love the picture. So useful.

So for any analysis you want to do based on runs recorded with the Workouts app, you have to first manually transfer data from screenshots to some other machine readable form and even then: The screenshots alone don’t provide nearly enough useful data.

Strava

This is the other extreme in the list of apps I looked at: It provides excellent analysis and it has an extremely motivating high-score list for user-provided segments of a run. You don’t have to match routes exactly – the moment you run through an existing previously created segment, you’ll be able to compare your effort to others.

Screen Shot 2017-09-04 at 08.47.09.png
Segment rankings (this segment is uphill)

It’s also great at automatically matching previous runs over the same route, so you can compare your runs over time.

Screen Shot 2017-09-04 at 08.44.32.png
Getting faster over time (this mostly uphill too)

The other social features it offers don’t interest me, so I can’t really talk about them.

However: As good as the analysis is, as bad its recording feature is: Of all the apps I looked at it provides the least amount of detail during the run and, what’s worse, its GPS tracking is extremely inaccurate and unreliable.

I’m always running having my phone with me – mainly for easy access to all my media and to Overcast and also because most of my runs I do on my way home from the office where I need the phone anyways. Strava doesn’t make use of this but instead solely relies on the watches GPS which is much less accurate than the phones.

I can understand this: The device is smaller, so it’s harder to put in powerful antennas, it has way less battery and a much weaker CPU than the phone, so it just can’t be as good. It’s totally ok for when you only have the watch with you, but when you have the phone with you, it’s a shame if the app can’t use it.

Runkeeper

Runkeeper uses both the watch and the phone for location tracking and it provides a great UI while the workout is ongoing.

Its analysis features aren’t as good as the ones from Strava though. It doesn’t do the automated segment high-scoring and it’s not as good at comparing runs over the same route with each other.

And finally, the UI of the site doesn’t look as polished as does Strava’s – but that’s just a matter of taste I guess.

… master of none

For all of July and August, my mode of operation was to use Runkeeper to acquire the data during the run and then to export a .gpx file from their site and to import it into Strava.

This gave me the best of both worlds: Very good data gathering and very good data analysis.

However, I wasn’t entirely happy with this either as the process was somewhat cumbersome and, lately, unstable.

Probably caused by iOS 11 Beta, I’ve seen various failure modes related to Runkeeper, all of wich are very annoying:

  1. The workout might start on the Watch but it will not manage to also start it on the phone. This way, the workout will be tracked, but no route data will be saved.
  2. Runkeeper on the phone will crash after about 10 minutes. There’s no indication of this happening, but the result will be that a 10 minutes run is logged instead of the real data on the watch. If this happens, there is no way to even just get to the data without the route.

Issue 1) I could work around often by launching Runkeeper manually on the phone, then starting the workout on the watch and then making sure that the workout would also start on the phone.

If that happened, then route data was tracked correctly.

Unfortunately, sometimes, this stopped working all-together and the only way for the watch to talk to the phone again was to completely uninstall and reinstall Runkeeper on both the Phone and the Watch. This is annoying when you want to start running, but you can’t because the Software-gods have put 20 minutes of fiddling with the App Store in front of you (also, Runkeeper is bigger than the App Store’s 3G download limit, so you better have wifi  available).

Issue 2) is much worse though: There’s no indication of it happening. You’d think that the blue bar “Runkeeper is actively using your location” on the phone would be a good indicator, but it isn’t: When the crash happens, the bar stays there until you unlock your phone. Then it goes away.

So there’s no way to be sure unless you periodically unlock your phone which is very annoying and distracting during the run – especially as you’re sweaty and TouchID won’t work most of the time (I use a strong 25 character password).

I know – even if it isn’t tracked, a run is a run. But it certainly doesn’t feel that way and how it feels is very important to keep motivated to doing this – especially under bad weather conditions.

let’s just hack it

Now, admittedly, these are very likely beta-woes that will eventually solve themselves. We’re pretty far into the beta cycle though (Beta 9 at the time of this writing), so I’m suspicious that these issues won’t be fixed come release but will have to wait for a future update to either Runkeeper or the OS.

Losing about a third of my runs to software issues felt really unacceptable to me, especially considering that Runkeeper still wasn’t offering some features that the workout app was (like enabling the screen lock – which is important when running in the rain).

However, when I looked again at the WWDC sessions this year, I found out that IOS11 will finally offer an API to read and write route data for workouts. This means that the data you track using Apple’s built-in app will finally be available to other apps to read.

This would give me the best of all worlds: Use the best data-gathering app and export it to the best analysis app; side-stepping the stability issues.

IMG_1324.png
Such Wow. Much UI.

So, this weekend, I hacked together a quick solution (MIT licensed) that does exactly this. It lists you all your workouts and if you tap one, it will eventually show you a share-sheet, allowing you to select a location to store a .gpx file to.

That file contains all the information required for Strava to do its analysis.

In a perfect world, this app would of course upload directly to Strava. And it would not block the UI thread while it’s exporting the gpx file. And it would actually have some UI to speak of.

But this was a quick-hack that solved an issue for me – and who knows – maybe it will fix it for you.

If you need a real solution for this, Twitter user @dwlz is apparently working on a real app that will be usable for normal people and I’ll definitely switch to that when it’s ready. But until then, I can finally track my runs with the peace of mind of having a crash-free solution that still provides the best analysis possible.

Screen Shot 2017-09-04 at 08.54.14.png
A run tracked with the Workout app and uploaded to Strava using my hack